
Lucene Version 3.0 Tutorial

Bob Carpenter
LingPipe, Inc.

carp@lingpipe.com

Mitzi Morris
Columbia University

mitzi@panix.com

Breck Baldwin
LingPipe, Inc.

breck@lingpipe.com

Draft of : July 6, 2012

Excerpted from:

Text Processing with Java 6.

http://alias-i.com/lingpipe-book/index.html

http://alias-i.com/lingpipe-book/index.html

Copyright 2010–2012, LingPipe, Inc.

All rights reserved.

Chapter 1

The Lucene Search Library

Apache Lucene is a search library written in Java. Due to its performance, con-
figurability and generous licensing terms, it has become very popular in both
academic and commercial settings. In this section, we’ll provide an overview of
Lucene’s components and how to use them, based on a single simple hello-world
type example.

Lucene provides search over documents. A document is essentially a collec-
tion of fields, where a field supplies a field name and value. Lucene manages a
dynamic document index, which supports adding documents to the index and
retrieving documents from the index using a highly expressive search API.

Lucene does not in any way constrain document structures. An index may
store a heterogeneous set of documents, with any number of different fields
which may vary by document in arbitrary ways. Lucene can store numerical and
binary data as well as text, but in this tutorial we will concentrate on text values.

What actually gets indexed is a set of terms. A term combines a field
name with a token that may be used for search. For instance, a title field
like Molecular Biology, 2nd Edition might yield the tokens molecul, biolog, 2, and
edition after case normalization, stemming and stoplisting. The index structure
provides the reverse mapping from terms, consisting of field names and tokens,
back to documents. To search this index, we construct a term composed of the
field title and the tokens resulting from applying the same stemming and sto-
plisting to the text we are looking for.

A Lucene search takes a query and returns a set of documents that are ranked
by relevancy with documents most similar to the query having the highest score.
Lucene’s search scoring algorithm weights results using TF-IDF, term frequency-
inverse document frequency. Term frequency means that high frequency terms
within a document have higher weight than do low-frequency terms. Inverse
document frequency means that terms which occur frequently across many doc-
uments in a collection of documents are less likely to be meaningful descriptors
of any given document in a corpus and are therefore down-weighted.

1

2 CHAPTER 1. THE LUCENE SEARCH LIBRARY

1.1 Fields

A document is a collection of fields. Search and indexing is carried out over these
fields. All fields in Lucene are instances of the Fieldable interface in the pack-
age org.apache.lucene.document. This interface is implemented by the ab-
stract class AbstractField and the two final classes Field and NumericField
which inherit from it. In this tutorial we cover the use of the class Field to index
and store text.

For example, a MEDLINE citation might be stored as a series of fields: one
for the name of the article, another for name of the journal in which it was pub-
lished, another field for the authors of the article, a pub-date field for the date
of publication, a field for the text of the article’s abstract, and another field for
the list of topic keywords drawn from Medical Subject Headings (MeSH). Each of
these fields would get a different name, and at search time, the client could spec-
ify that it was searching for authors or titles or both, potentially restricting to a
date range and set of journals by constructing search terms for the appropriate
fields and values.

1.1.1 Constructing Fields

A field requires all of its components to be specified in the constructor. Even so,
fields are defined to be mutable so that their values, but not their field names,
may be reset after construction.

The field constructor takes the field name, value, and a set of flags which
specify how it will be saved in the index. These indexing flags are discussed in a
subsequent section.

There are also several utility constructors that provide default values for the
flags in addition to those taking the text value as a Reader. There is also a public
constructor that takes a TokenStream (see Section 1.3) rather than a string.1 An
additional constructor takes a boolean flag controlling whether the field’s name
is interned or not (see Section ??), with the default setting being true.

1.1.2 Field Names and Values

Each constructor for a field requires a name for the field. At search time, the
supplied field name restricts the search to particular fields.

Each constructor for a field requires a value for the field which may be sup-
plied as a Java String or Reader.2 The value for a binary field is supplied as a
byte array slice.

1According to the javadoc, this is useful for pre-analyzed fields. Users must be careful to make
sure the token stream provided is consistent with whatever analysis will happen at query time.

2We recommend not using a Reader, because the policy on closing such readers is confusing. It’s
up to the client to close, but the close can only be done after the document has been added to an
index. Making fields stateful in this way introduces a lifecycle management problem that’s easily
avoided. Very rarely will documents be such that a file or network-based reader may be used as is
in a field; usually such streams are parsed into fields before indexing, eliminating any performance
advantage readers might have.

1.1. FIELDS 3

1.1.3 Indexing Flags

As of version 3.0 of Lucene, the constructor for a field has three arguments that
control how a term is indexed and/or stored. These arguments are specified
using nested enum instances in the Field class.

The Field.Store Enum

All fields are marked as to whether their raw value is stored in the index or not.
Storing raw values allows you to retrieve them at search time, but may consume
substantial space.

The enum Field.Store is used to mark whether or not to store the value of
a field. Its two instances, Store.YES and Store.NO, have the obvious interpre-
tations.

The Field.Index Enum

All fields are also marked as to whether they are indexed or not. A field must be
indexed in order for it to be searchable. While it’s possible to have a field that is
indexed but not stored, or stored but not indexed, it’s pointless to have a field
that is neither stored nor indexed.

Whether a field is indexed is controlled by an instance of the Field.Index
enum. The value Index.NO turns off indexing for a field. The other values all
turn on indexing for a field. Where they vary is how the terms that are indexed
are pulled out of the field value. The value Index.ANALYZED indexes a field with
tokenization turned on (see Section 1.3). The value Index.NOT_ANALYZED causes
the field value to be treated like a single token; it’s primarily used for identifier
fields that are not decomposed into searchable terms.

Lucene’s default behavior is to compute term frequency the proportion of the
number of times a term occurs as opposed to a simple frequency count. It does
this by storing a normalizing factor for each field that is indexed. The values
Index.ANALYZED_NO_NORMS and Index.NOT_ANALYZED_NO_NORMS disable stor-
age of these normalizing factors. This results in less memory usage during
search, but will affect search results. Furthermore, in order for this to be ef-
fective, this must be turned off during indexing for all documents in the index.

The Field.TermVector Enum

The final specification on a field is whether to store term vectors or not, and
if they are stored, what specifically to store. A term vector stores a list of the
document’s terms and number of occurrences in that document. Term vectors
can also store token position. They may be useful for downstream processing
like results clustering, finding documents that are similar to a known document,
or document highlighting.

Whether to use term vectors is controlled by an instance of the enum
Field.TermVector. The default is not to store term vectors, corresponding
to value TermVector.NO. Because we do not need term vectors for our simple

4 CHAPTER 1. THE LUCENE SEARCH LIBRARY

demo, we use a constructor for Field which implicitly sets the term vector flag
to TermVector.NO.

1.1.4 Field Getters

Once we have a field, we can access the components of it such as its name, value,
whether its indexed, stored, or tokenized, and whether term vectors are stored.
These methods are all specified in the Fieldable interface. For instance, name()
returns a field’s name, and stringValue() its value.3

There are convenience getters derived from the flag settings. For instance,
isIndexed() indicates if the field is indexed, and isTokenized() indicates
whether the indexing involved analysis of some sort. The method isStored()
indicates if the value is stored in the index, and isTermVectorStored() whether
the term vector is stored in the index.

1.2 Documents

In Lucene, documents are represented as instances of the final class Document,
in package org.apache.lucene.document.

1.2.1 Constructing and Populating Documents

Documents are constructed using a zero-arg constructor Document(). Once a
document is constructed, the method add(Fieldable) is used to add fields to
the document.

Lucene does not in any way constrain document structures. An index may
store a heterogeneous set of documents, with any number of different fields
which may vary by document in arbitrary ways. It is up to the user to enforce
consistency at the document collection level.

A document may have more than one field with the same name added to it.
All of the fields with a given name will be searchable under that name (if the
field is indexed, of course). The behavior is conceptually similar to what you’d
get from concatenating all the field values; the main difference is that phrase
searches don’t work across the concatenated items.

1.2.2 Accessing Fields in Documents

The Document class provides a means of getting fields by name. The method
getFieldable(String) returns the field for a specified name. If there’s no field
with the specified name, it returns null rather than raising an exception.

3For fields constructed with a Reader for a value, the method stringValue() returns null. In-
stead, the method readerValue() must be used. Similarly, the methods tokenStreamValue() and
binaryValue() are used to retrieve values of fields constructed with token streams or byte array
values. The problem with classes like this that that allow disjoint setters (or constructors) is that it
complicates usage for clients, who now have to check where they can get their data. Another example
of this anti-pattern is Java’s built-in XML InputSource in package org.xml.sax.

1.2. DOCUMENTS 5

The return type is Fieldable, but this interface provides nearly the same list
of methods as Field itself, so there is rarely a need to cast a fieldable to a field.

If there is more than one field in a document with the same name, the simple
method getFieldable(String) only returns the first one added. The method
getFieldables(String) returns an array of all fields in a document with the
given name. It’s costly to construct arrays at run time (in both space and time for
allocation and garbage collection), so if there is only a single value, the simpler
method is preferable.

1.2.3 Document Demo

We provide a simple demo class, DocDemo, which illustrates the construction,
setting and accessing of fields and documents.

Code Walkthrough

The main() method starts by constructing a document and populating it.

Document doc = new Document();
doc.add(new Field("title", "Fast and Accurate Read Alignment",

Store.YES,Index.ANALYZED));
doc.add(new Field("author", "Heng Li",

Store.YES,Index.ANALYZED));
doc.add(new Field("author", "Richard Durbin",

Store.YES,Index.ANALYZED));
doc.add(new Field("journal","Bioinformatics",

Store.YES,Index.ANALYZED));
doc.add(new Field("mesh","algorithms",

Store.YES,Index.ANALYZED));
doc.add(new Field("mesh","genomics/methods",

Store.YES,Index.ANALYZED));
doc.add(new Field("mesh","sequence alignment/methods",

Store.YES,Index.ANALYZED));
doc.add(new Field("pmid","20080505",

Store.YES,Index.NOT_ANALYZED));

After constructing the document, we add a sequence of fields, including a title
field, two author fields, a field for the name of the journal, several fields storing
mesh terms, and a field storing the document’s PubMed identifier. These terms
are all stored and analyzed other than the identifier, which is not analyzed.

After constructing the document, we loop over the fields and inspect them.

for (Fieldable f : doc.getFields()) {
String name = f.name();
String value = f.stringValue();
boolean isIndexed = f.isIndexed();
boolean isStored = f.isStored();
boolean isTokenized = f.isTokenized();
boolean isTermVectorStored = f.isTermVectorStored();

6 CHAPTER 1. THE LUCENE SEARCH LIBRARY

Note that the access is through the Fieldable interface. We include the calls to
the relevant methods, but omit the actual print statements.

Running the Demo

The Ant target doc-demo runs the demo.

> ant doc-demo

name=title value=Fast and Accurate Read Alignment
indexed=true store=true tok=true termVecs=false

name=author value=Heng Li
indexed=true store=true tok=true termVecs=false

...
name=mesh value=genomics/methods

indexed=true store=true tok=true termVecs=false
name=mesh value=sequence alignment/methods

indexed=true store=true tok=true termVecs=false
name=pmid value=20080505

indexed=true store=true tok=false termVecs=false

We’ve elided three fields, marked by ellipses.

1.3 Analysis and Token Streams

Lucene employs analyzers to convert the text value of a fields marked as
analyzed to a stream of tokens. At indexing time, Lucene is supplied
with an implementation of the abstract base class Analyzer in package
org.apache.lucene.analysis. An analyzer maps a field name and text value
to a TokenStream, also in the analysis package, from which the terms to be
indexed are retrieved using an iterator-like pattern.

1.3.1 Token Streams and Attributes

Before version 3.0 of Lucene, token streams had a string-position oriented tok-
enization API, much like LingPipe’s tokenizers. Version 3.0 generalized the in-
terface for token streams and other basic objects using a very general design
pattern based on attributes of other objects. 4

Code Walkthrough

To see how the tokenization process works, we provide a sample class
LuceneAnalysis that applies an analyzer to a field name and text input and
prints out the resulting tokens. The work is done in a simple main() with two

4The benefit of this pattern is not in its use, which is less convenient than a direct implementation.
The advantage of Lucene’s attribute pattern is that it leaves enormous flexibility for the developers
to add new features without breaking backward compatibility.

1.3. ANALYSIS AND TOKEN STREAMS 7

arguments, the field name, set as the string variable fieldName, and the text to
be analyzed, set as the string variable text.

The first step is to create the analyzer.

StandardAnalyzer analyzer
= new StandardAnalyzer(Version.LUCENE_36);

Here we’ve used Lucene’s StandardAnalyzer, in package
org.apache.lucene.analysis.standard, which applies case normaliza-
tion and English stoplisting to the simple tokenizer, which pays attention to
issues like periods and e-mail addresses.5 Note that it’s constructed with a
constant for the Lucene version, as the behavior has changed over time.

The standard analyzer, like almost all of Lucene’s built-in analyzers, ignores
the name of the field that is passed in. Such analyzers essentially implement
simple token stream factories, like LingPipe’s tokenizer factories.6

The next step of the main() method constructs the token stream given the
string values of the command-line arguments fieldName and text.

Reader textReader = new StringReader(text);

TokenStream tokenStream
= analyzer.tokenStream(fieldName,textReader);

CharTermAttribute terms =
tokenStream.addAttribute(CharTermAttribute.class);

OffsetAttribute offsets
= tokenStream.addAttribute(OffsetAttribute.class);

PositionIncrementAttribute positions
= tokenStream
.addAttribute(PositionIncrementAttribute.class);

We first have to create a Reader, which we do by wrapping the input text string
in a StringReader (from java.io).7 Then we use the analyzer to create a to-
ken stream from the field name and text reader. The next three statements at-
tach attributes to the token stream, specifically a term attribute,8 offset attribute

5See the tokenization chapter in the companion volume, Natural Language Processing in LingPipe
for an overview of natural language tokenization in LingPipe, as well as adapters between Lucene
analyzers and LingPipe tokenizer factories).

6It is unfortunate that Lucene does not present a token stream factory interface to produce token
streams from text inputs. Then it would be natural to construct an analyzer by associating token
stream factories with field names. We follow this pattern in adapting LingPipe’s tokenizer factories
to analyzers in the companion volume, Natural Language Processing with LingPipe, in the section on
adapting Lucene analyzers.

Lucene’s sister package, Solr, which embeds Lucene in a client-server architecture, includes a token
stream factory interface TokenizerFactory, which is very much like LingPipe’s other than operating
over readers rather than character sequences and providing Solr-specific initialization and configura-
tion management.

7Unlike the case for documents, there is no alternative to using readers for analysis. It is common
to use string readers because they do not maintain handles on resources other than their string
reference.

8As of version 3.1, the TermAttribute class was renamed CharTermAttribute because it holds
objects of type CharSequence, which can be printed by the toString method.

8 CHAPTER 1. THE LUCENE SEARCH LIBRARY

and position increment attribute. These are used to retrieve the text of a term,
the span of the term in the original text, and the ordinal position of the term
in the sequence of terms in the document. The position is given by an incre-
ment from the previous position, and Lucene uses these values for phrase-based
search (i.e., searching for a fixed sequence of tokens in the given order without
intervening material).

The last block of code in the main() method iterates through the token
stream, printing the attributes of each token it finds.

while (tokenStream.incrementToken()) {
int increment = positions.getPositionIncrement();
int start = offsets.startOffset();
int end = offsets.endOffset();
String term = terms.toString();

The while loop continually calls incrementToken() on the token stream, which
advances to the next token, returning true if there are more tokens. The body
of the loop just pulls out the increment, start and end positions, and term for
the token. The rest of the code, which isn’t shown, just prints these values. this
pattern of increment-then-get is particularly popular for tokenizers; LingPipe’s
tokenizers use a similar model.

Running the Demo

It may be run from the Ant target lucene-analysis, with the arguments pro-
vided by properties field.name and text respectively.

> ant -Dfield.name=foo -Dtext="Mr. Sutton-Smith will pay $1.20
for the book." lucene-analysis

Mr. Sutton-Smith will pay $1.20 for the book.
012345678901234567890123456789012345678901234
0 1 2 3 4

INCR (START, END) TERM INCR (START, END) TERM
1 (0, 2) mr 2 (22, 25) pay
1 (4, 10) sutton 1 (27, 31) 1.20
1 (11, 16) smith 3 (40, 44) book

The terms are all lowercased, and non-word-internal punctuation has been re-
moved. The stop words will, for and the are also removed from the output.
Unlike punctuation, when a stop word is removed, it causes the increment be-
tween terms to be larger. For instance, the increment between smith and pay is
2, because the stopword will was removed between them. The start (inclusive)
and end (exclusive) positions of the extracted terms is also shown.

1.4. DIRECTORIES 9

1.4 Directories

Lucene provides a storage abstraction on top of Java in the abstract base class
Directory in the org.apache.lucene.store package. Directories provide an
interface that’s similar to an operating system’s file system.

1.4.1 Types of Directory

The FSDirectory abstract base class, also in package store, extends Directory
to support implementations based on a file system. This is the most common
way to create a directory in Lucene. The implementation RAMDirectory, also
in store supports in-memory directories, which are efficient, but less scalable
than file-system directories. The package org.apache.lucene.store contains
several specialized implementations.

1.4.2 Constructing File-System Directories

An instance of a file-system directory may be created using the factory method
FSDirectory.open(File), which returns an implementation of FSDirectory.
As of Lucene 3.6, this method returns a specific FSDirectory implementation,
based on your environment and the known limitations of each implementation.

At construction, all FSDirectory implementations are supplied with a File
and a LockFactory object which specifies how the files on the file system
will be locked. The LockFactory class is an abstract class. Several imple-
mentations are provided in the package org.apache.lucene.store. Conve-
nience constructors supply a default LockFactory. As of Lucene 3.6, this is
a NativeFSLockFactory.

1.5 Indexing

Lucene uses the IndexWriter class in org.apache.lucene.index to add doc-
uments to an index and optimize existing indexes. Documents do not all need
to be added at once — documents may be added to or removed from an existing
index. We consider deleting documents in Section 1.8.

1.5.1 Constructing an IndexWriter

An IndexWriter is constructed from a lucene.store.Directory and a
IndexWriterConfig object which specifies the Lucene version of the index,
the default Analyzer, and how the IndexWriter uses memory and processing re-
sources during indexing. The IndexWriterConfig constructor takes the Lucene
version and the default analyzer as arguments and sets its properties to default
values accordingly. Getter and setter methods are used to query and update
these properties.

10 CHAPTER 1. THE LUCENE SEARCH LIBRARY

1.5.2 Merging and Optimizing

Indexing maintains a small buffer of documents in memory, occasionally writing
the data in that batch of documents out to disk. After enough such batches have
been written to disk, Lucene automatically merges the individual batches into
bigger batches. Then, after a number of larger chunks of index accumulate, these
are merged. You can observe this behavior in your file browser if you’re using
a disk directory for indexing a large batch of documents. As more documents
are added, small index segments are continually added. Then, at various points,
these smaller indexes are merged into larger indexes.

It’s possible to control the size of the in-memory buffer and the frequency of
merges via setters on the IndexWriterConfig.

It’s even possible to programmatically merge two indexes from different
directories. Lucene’s IndexWriter class provides a handy variable-argument-
length method addIndexes(IndexReader...) which adds indexes maintained
by the specified readers to the index writer. Then, when the writer is optimized,
the indexes will all be merged into the writer’s index directory.

Being able to merge indexes makes it easy to split the indexing job into multi-
ple independent jobs and then either merge the results or use all of the indexes
together without merging them (using a MultiReader).

1.5.3 Indexing Demo

We provide a demo class LuceneIndexing that shows how basic text indexing
works.

Code Walkthrough

The work is all done in the main() method, whIch starts by constructing the
index writer.

public static void main(String[] args)
throws CorruptIndexException, LockObtainFailedException,

IOException {

File docDir = new File(args[0]);
File indexDir = new File(args[1]);

Directory fsDir = FSDirectory.open(indexDir);

Analyzer stdAn
= new StandardAnalyzer(Version.LUCENE_36);

Analyzer ltcAn
= new LimitTokenCountAnalyzer(stdAn,Integer.MAX_VALUE);

IndexWriterConfig iwConf
= new IndexWriterConfig(Version.LUCENE_36,ltcAn);

iwConf.setOpenMode(IndexWriterConfig.OpenMode.CREATE);

IndexWriter indexWriter
= new IndexWriter(fsDir,iwConf);

1.5. INDEXING 11

The two arguments correspond to the directory from which documents to be
indexed are read and the directory to which the Lucene index is written. We
create a file-system-based directory using the index directory (see Section 1.4).

We then create a standard analyzer (see Section 1.3). In order to index all
the text in a field, however long that field may be, we need to wrap the standard
analyzer in a LimitTokenCountAnalyzer We set the maximum field length to
Integer.MAX_VALUE, the largest possible value available.

Next we specify the config for the index writer. We call the setOpenMode
method with the enum constant IndexWriterConfig.OpenMode.CREATE
which causes the index writer to create a new index or overwrite
an existing one. The other two possible open modes enums are
IndexWriterConfig.OpenMode.CREATE_OR_APPEND which creates a new index
if one does not exist, else opens an existing index and appends documents and
IndexWriterConfig.OpenMode.APPEND which opens an existing index.

For both the standard analyzer and the index writer config we pass in a Lucene
version constant.9 Finally, we create an index writer from the directory and the
index writer config.

Constructing the index may throw all three exceptions listed on the main()
method. The first two exceptions are Lucene’s, and both extend IOException.
You may wish to catch them separately in some cases, as they clearly indicate
what went wrong. A CorruptIndexException will be thrown if we attempt to
open an index that is not well formed. A LockObtainFailedException will be
thrown if the index writer could not obtain a file lock on the index directory. A
plain-old Java IOException will be thrown if there is an underlying I/O error
reading or writing from the files in the directory.

The second half of the main() method loops over the files in the specified
document directory, converting them to documents and adding them to the in-
dex.

for (File f : docDir.listFiles()) {
String fileName = f.getName();
String text = Files.readFromFile(f,"ASCII");
Document d = new Document();
d.add(new Field("file",fileName,

Store.YES,Index.NOT_ANALYZED));
d.add(new Field("text",text,

Store.YES,Index.ANALYZED));
indexWriter.addDocument(d);

}
int numDocs = indexWriter.numDocs();

indexWriter.forceMerge(1);
indexWriter.commit();
indexWriter.close();

9The Lucene version constant supplied to components in an application can differ by component.
For components used for both search and indexing it is critical that the Lucene version is the same
in the code that is called at indexing time and the code that is called at search time.

12 CHAPTER 1. THE LUCENE SEARCH LIBRARY

We keep a count of the number of characters processed in the variable numChars.
We then loop is over all the files in the specified document directory. For each
file, we get its name and its text (using LingPipe’s static readFromFile() util-
ity method, which converts the bytes in the file to a string using the specified
character encoding, here ASCII).

We then create a document and add the file name as an unanalyzed field
and the text as an analyzed field. After creating the document, we call the
addDocument(Document) method of the index writer to add it to the index.

After we’ve finished indexing all the files, we call the index writer’s
forceMerge(int) method, followed by commit. The argument to forceMerge
is 1, so that the index will be merged down into a single segment, resulting in
a smaller index with better search performance. This is a costly operation. The
amount of free space required is two to three times the size of the directory that
the index writer is opened on. When the merge completes, both the pre-merge
and newly merged indexes exist. Because Lucene allows search to proceed inde-
pendently of indexing, Lucene search components may have index readers open
on the same directory. These search components will be operating on the index
that existed when they were opened and will not see any changes made to the
directory by the index writer until the call to commit, which syncs all referenced
index files. At this point old indexes will be deleted, freeing up space.

We then close the index writer using the close() method, which
may throw an IOException; the IndexWriter class is declared to
implement Java’s Closeable interface, so we could’ve used LingPipe’s
Streams.closeSilently() utility method to close it and swallow any I/O ex-
ceptions raised.

Finally, we get the number of documents that are in the current index using
the method numDocs(); if documents were in the index when it was opened,
these are included in the count. We also print out other counts, such as the
number of characters, (print statements omitted from above code listing).

Running the Demo

The Ant target lucene-index runs the indexing demo. It supplies the values of
properties doc.dir and index.dir to the program as the first two command-
line arguments. In this example we will index the 85 Federalist Papers, and we
will continue to use this index in subsequent examples in this tutorial.

The sample code includes the subdirectory data/federalist-papers
which contains the Project Gutenberg distribution of the plain-text version of
theFederalist Papers along with the shell script get_papers.sh. Running this
script will create a directory called texts and populate it with the individual pa-
pers, one paper per file. Once unpacked, we use this directory as the doc.dir
argument.

> ant -Ddoc.dir=../../data/federalist-papers/texts
-Dindex.dir=temp.idx lucene-index

Index Directory=/Users/mitzimorris/aliasi/lpbook/src/applucene/temp.idx
Doc Directory=/Users/mitzimorris/aliasi/lpbook/data/federalist-papers/texts

1.5. INDEXING 13

num docs=85

Lucene’s very fast. On a workstation, it takes less than a second to run the demo,
including forking a new JVM. On my wimpy notebook, it takes two seconds. The
run indexed 85 documents consisting of approximately 1.1 million words total.

After indexing, we can look at the contents of the index directory, showing
file size in kilobytes.

> export BLOCKSIZE=1024; ls -s temp.idx

total 1520
1144 _0.fdt

4 _0.fdx
4 _0.fnm

84 _0.frq
4 _0.nrm

188 _0.prx
4 _0.tii

80 _0.tis
4 segments.gen
4 segments_1

These files contain binary representations of the index. The file sege-
ments.gen is a global file which contains the generation number of the index.
The file segments_1 contains the per-commit list of segments.

The per-segment files begin with an underscore and have suffixes which iden-
tify the type of data they contain. The field info file, suffix .fnm, contains the
field names and infos. The term dictionary files, .tis and .tii, are used to
navigate the index to retrieve information for each term. Term frequencies are
stored in the .frq file and term positions are stored in the .prx file. Normaliza-
tion factors used for scoring are stored in the .nrm file. The files .fdt and .fdx
contain the raw text data for the stored fields. These last two are not used by
Lucene for index search and scoring, they are only for retrieval of search results.

The index takes up 1.5M total disk space. Most of this space is used for the
stored fields file, 1.2M in size, which is slightly smaller than the raw text files
themselves.

> du -sh ../../data/federalist-papers/texts

1.3M ../../data/federalist-papers/texts

1.5.4 Luke

Luke is an index browser for Lucene, also written in Java. Downloads are available
from http://code.google.com/p/luke/. It provides a quick and easy way to
explore the contents of the index. Figure 1.1 illustrates how Luke presents an
overview of the contents of the index.

http://code.google.com/p/luke/

14 CHAPTER 1. THE LUCENE SEARCH LIBRARY

1.5.5 Duplicate Documents

If we were to run the demo program again, each of the documents would be
added to the index a second time, and the number of documents reported will
be 170 (twice the initial 85). Although a Lucene index provides identifiers for
documents that are unique (though not necessarily stable over optimizations),
nothing in the index enforces uniqueness of document contents. Lucene will
happily create another document with the same fields and values as another
document. It keeps them separate internally using its own identifiers.

1.6 Queries and Query Parsing

Lucene provides a highly configurable hybrid form of search that combines ex-
act boolean searches with softer, more relevance-ranking-oriented vector-space
search methods. All searches are field-specific, because Lucene indexes terms
and a term is comprised of a field name and a token.10

10Given that search is carried out over terms, there’s no way to easily have a query search over
all fields. Instead, field-specific queries must be disjoined to achieve this effect. Scoring for this
approach may be problematic because hits on a shorter field will have a higher score than hits on
a longer field. Another approach is to denormalize the documents by creating synthetic fields that
concatenate the value of other fields.

Fig. 1.1: Screenshot of Luke index browser, showing overview of index temp.idx

1.6. QUERIES AND QUERY PARSING 15

1.6.1 Constructing Queries Programmatically

Queries may be constructed programmatically using the dozen or so built-
in implementations of the the Query abstract base class from the package
org.apache.lucene.search.

The most basic query is over a single term in a single field. This form of
query is implemented in Lucene’s TermQuery class, also in the search pack-
age. A term query is constructed from a Term, which is found in package
org.apache.lucene.index. A term is constructed from a field name and text
for the term, both specified as strings.

The BooleanQuery class is very misleadingly named; it supports both hard
boolean queries and relevance-ranked vector-space queries, as well as allowing
them to be mixed.

A boolean query may be constructed with the no-argument constructor
BooleanQuery() (there is also a constructor that provides extra control over
similarity scoring by turning off the coordination component of scoring).

Other queries may then be added to the boolean query using the method
add(Query,BooleanClause.Occur). The second argument, an instance of the
nested enum BooleanClause.Occur in package search, indicates whether the
added query is to be treated as a hard boolean constraint or contribute to the
relevance ranking of vector queries. Possible values are BooleanClause.MUST,
BooleanClause.MUST_NOT, and BooleanClause.SHOULD. The first two are used
for hard boolean queries, requiring the term to appear or not appear in any result.
The last value, SHOULD, is used for vector-space queries. With this occurrence
value, Lucene will prefer results that match the query, but may return results
that do not match the query.

The recursive nature of the API and the overloading of queries to act as both
hard boolean and vector-type relevance queries, leads to the situation where
queries may mix hard and soft constraints. It appears that clauses constrained
by hard boolean occurrence constraints, MUST or MUST_NOT, do not contribute to
scoring. It’s less clear what happens when one of these hybrid queries is nested
inside another boolean query with its own occurrence specification. For instance,
it’s not clear what happens when we nest a query with must-occur and should-
occur clauses as a must-occur clause in a larger query.

BooleanQuery bq1 = new BooleanQuery();
bq1.add(new TermQuery(new Term("text","biology")), Occur.MUST);
bq1.add(new TermQuery(new Term("text","cell")), Occur.SHOULD);

BooleanQuery bq2 = new BooleanQuery();
bq2.add(new TermQuery(new Term("text","micro")), Occur.SHOULD);
bq2.add(bq1,Occur.MUST);

1.6.2 Query Parsing

Lucene specifies a language in which queries may be expressed.
For instance, [computer NOT java]11 produces a query that specifies the

11We display queries Q as [Q] to indicate the scope of the search without using quotes, which are

16 CHAPTER 1. THE LUCENE SEARCH LIBRARY

term computer must appear in the default field and the term java must not ap-
pear. Queries may specify fields, as in text:java, which requires the term java to
appear in the text field of a document.

The full syntax specification is available from http://lucene.apache.org/
java/3_0_2/queryparsersyntax.html. The syntax includes basic term and
field specifications, modifiers for wildcard, fuzzy, proximity or range searches,
and boolean operators for requiring a term to be present, absent, or for com-
bining queries with logical operators. Finally, sub-queries may be boosted by
providing numeric values to raise or lower their prominence relative to other
parts of the query.

A query parser is constructed using an analyzer, default field, and Lucene
version. The default field is used for queries that do not otherwise specify the
field they search over. It may then be used to convert string-based queries into
query objects for searching.

The query language in Lucene suffers from a confusion between queries over
tokens and queries over terms. Complete queries, must of course, be over terms.
But parts of queries are naturally constrained to be over tokens in the sense of
not mentioning any field values. For instance, if Q is a well-formed query, then
so is foo:Q. In proper usage, the query Q should be constrained to not mention
any fields. In other words, Q should be a query over tokens, not a general query.

Query Language Syntax

In Figure 1.2, we provide an overview of the full syntax available through Lucene’s
query parser. The following characters must be escaped by preceding them with
a backslash:

+ - & | ! () { } [] ^ " ~ * ? : \

For example, [foo:a\(c] searches for the three-character token a(c in the field
foo. Of course, if the queries are specified as Java string literals, further escaping
is required (see Section ??).

1.6.3 Default Fields, Token Queries, and Term Queries

When we set up a query parser, we will be supplying a default field. Unmarked
token queries will then be interpreted as if constrained to that field. For instance,
if title is the default query field, then query [cell] is the same as the query
[title:cell].

Like the programmatic queries, Lucene’s query language does not clearly sep-
arate the role of token-level queries, which match tokens or sequences of tokens,
and term-level queries, which match tokens within a field. Thus it’s possible
to write out queries with rather unclear structure, such as [text:(money AND
file:12.ascii.txt)]; this query will actually match (as you can try with the
demo in the next section) because the embedded field file takes precedence
over the top-level field text.

often part of the search itself.

http://lucene.apache.org/java/3_0_2/queryparsersyntax.html
http://lucene.apache.org/java/3_0_2/queryparsersyntax.html

1.6. QUERIES AND QUERY PARSING 17

Type Syntax Description

Token t Match token t

Phrase "cs" Match tokens in cs in exact order without
gaps

Field f:Q Match query Q in field f

Wildcard,
Char

cs1?cs2 Match tokens starting with cs1, ending with
cs2, with any char between

Wildcard,
Seq

cs1*cs2 Match tokens starting with cs1, ending with
cs2, with any char sequence between

Fuzzy t∼ Match token t approximately

Fuzzy,
Weighted

t∼d Match token t within minimum similarity d

Proximity P∼n Match tokens in phrase P within distance n

Range,
Inclusive

f:[t1 TO t2] Match tokens lexicographically between to-
kens t1 and t2 inclusive

Range,
Exclusive

f:(t1 TO t2) Match tokens lexicographically between to-
kens t1 and t2 exclusive

Boosting Pˆd Match phrase P, boosting score by d

Disjunction Q1 OR Q2 Match query Q1 or query Q2 (or both)

Conjunction Q1 AND Q2 Match query Q1 and match query Q2

Difference Q1 NOT Q2 Match query Q1 but not query Q2

Must +P Token or phrase P must appear

Mustn’t -P Token or phrase P must not appear

Grouping (Q) Match query Q (disambiguates parsing)

Fig. 1.2: Lucene’s Query Syntax. In the table, t is a token made up of a sequence of
characters, f is a field name made up of a sequence of characters, cs1 is a non-empty
sequence of characters, cs2 is any sequences of characters, d is a decimal number, n is a
natural number, Q is an arbitrary well-formed query, and P is a well-formed phrase query.

18 CHAPTER 1. THE LUCENE SEARCH LIBRARY

1.6.4 The QueryParser Class

Lucene’s QueryParser class, in package org.apache.lucene.queryparser,
converts string-based queries which are well-formed according to Lucene’s query
syntax into Query objects.

The constructor QueryParser(Version,String,Analyzer) requires a
Lucene version, a string picking out a default field for unmarked tokens, and
an analyzer with which to break phrasal queries down into token sequences.

Query parsing is accomplished through the method parse(String), which
returns a Query. The parse method will throw a Lucene ParseException, also
in package queryparser, if the query is not well formed.

1.6.5 Using Luke to Develop and Test Queries

The Luke index browser provides interactive search over an index via the search
tab. The top part of this tab contains a set of controls. The controls on the right
side specify the behavior of the analyzer and the searcher. On the top left side
there is a text box in which to enter the query string. Below the text box is a
display of the result of parsing this query string. The bottom half of this tab is
given over to search results.

Figure 1.3 illustrates a simple search over the index temp.idx that we created
in the previous section. In the top right, we specify the analyzer and default field
used by the query parser to be ‘text’ and StandardAnalyzer respectively. In the
top left, we entered the words powers of the judiciary. The parser treats each
word as a search term. The standard analyzer stop-lists of and the and produces
a query consisting of two terms: [text:powers] and [text:judiciary]. The
search results are displayed in ranked order.

1.7 Search

1.7.1 Index Readers

Lucene uses instances of the aptly named IndexReader to read data from an
index.

Distributed Readers

A convenient feature of the reader design in Lucene is that we may construct
an index reader from multiple indexes, which will then combine their contents
at search time. From the reader’s client’s perspective, the behavior is indistin-
guishable (other than in terms of speed) from a combined and optimized index.
We can even distribute these indexes over multiple machines on a network using
Java’s Remote Method Invocation (RMI).

1.7. SEARCH 19

Fig. 1.3: Screenshot of Luke index browser, showing search results

1.7.2 Index Searchers

Lucene supplies an IndexSearcher class that performs the actual search. Every
index searcher wraps an index reader to get a handle on the indexed data. Once
we have an index searcher, we can supply queries to it and enumerate results in
order of their score.

There is really nothing to configure in an index searcher other than its reader,
so we’ll jump straight to the demo code.

1.7.3 Search Demo

We provide a simple implementation of Lucene search based on the index we
created in the last section.

Code Walkthrough

The code is in the main() method of the demo class LuceneSearch. The method
starts off by reading in command-line arguments.

public static void main(String[] args)
throws ParseException, CorruptIndexException,

IOException {

File indexDir = new File(args[0]);

20 CHAPTER 1. THE LUCENE SEARCH LIBRARY

String query = args[1];
int maxHits = Integer.parseInt(args[2]);

We need the directory for the index, a string representing the query in Lucene’s
query language, and a specification of the maximum number of hits to return.
The method is declared to throw a Lucene corrupt index exception if the index
isn’t well formed, a Lucene parse exception if the query isn’t well formed, and a
general Java I/O exception if there is a problem reading from or writing to the
index directory.

After setting the command-line arguments, the next step is to create a Lucene
directory, index reader, index searcher and query parser.

Directory fsDir = FSDirectory.open(indexDir);
IndexReader reader = IndexReader.open(fsDir);
IndexSearcher searcher = new IndexSearcher(reader);

String dField = "text";
Analyzer stdAn

= new StandardAnalyzer(Version.LUCENE_36);
QueryParser parser

= new QueryParser(Version.LUCENE_36,dField,stdAn);

It is important to use the same analyzer in the query parser as is used in the
creation of the index. If they don’t match, queries that should succeed will fail
because the tokens won’t match.12 For instance, if we apply stemming in the
indexing to reduce codes to code, then we better do the same thing for the query,
because we won’t find codes in the index, only its stemmed form code.

The last bit of code in the search demo uses the query parser to parse the
query, then searches the index and reports the results.

Query q = parser.parse(query);

TopDocs hits = searcher.search(q,maxHits);
ScoreDoc[] scoreDocs = hits.scoreDocs;

for (int n = 0; n < scoreDocs.length; ++n) {
ScoreDoc sd = scoreDocs[n];
float score = sd.score;
int docId = sd.doc;
Document d = searcher.doc(docId);
String fileName = d.get("file");

The Query object is created by using the parser to parse the text query. We then
use the searcher instance to search given the query and an upper bound on the
number of hits to return. This returns an instance of the Lucene class TopDocs,
from package search, which encapsulates the results of a search (through refer-
ences back into the index).

12The analyzers must produce the same tokenization. In the demo programs here, the analyzer
used to create the index was a StandardAnalyzer wrapped in a LimitTokenCountAnalyzer. Since
the LimitTokenCountAnalyzer doesn’t change the underlying tokenization and we don’t expect our
queries to be very long, the query parser uses a StandardAnalyzer.

1.7. SEARCH 21

The TopDocs result provides access to an array of search results. Each result
is an instance of the Lucene class ScoreDoc, also in the search package, which
encapsulates a document reference with a floating point score.

The array of search results is sorted in decreasing order of score, with higher
scores representing better matches. We then enumerate over the array, and for
each ScoreDoc object, we pull its score out using the public member variable
score. We then pull its document reference number (Lucene’s internal identifier
for the doc) out with the member variable doc. With the Lucene document identi-
fier, we are able to retrieve the document from the searcher (which just delegates
this operation to its index reader internally). Finally, with the document in hand,
we retrieve its file name using the get() method on the document; we use get()
here rather than getValues(), which returns an array, because we know there
is only one file name for each document in the index. We could’ve also retrieved
the text of the document, because we stored it in the index.

Running the Demo

The Ant target lucene-search invokes the demo with command-line arguments
provided by the value of properties index.dir, query, and max.hits.

> ant -Dindex.dir=temp.idx -Dquery="powers of the judiciary"
-Dmax.hits=15 lucene-search

Index Dir=/Users/mitzimorris/aliasi/lpbook/src/applucene/temp.idx
query=powers of the judiciary
max hits=15
Hits (rank,score,file name)

0 0.29 paper_47.txt
1 0.23 paper_48.txt
2 0.19 paper_78.txt

...
13 0.10 paper_81.txt
14 0.09 paper_82.txt

We run this demo with the query string powers of the judiciary. As we saw
in the previous section, the query parser stop-lists the words of and the, re-
ducing this query to a boolean search for documents which contain the terms
[text:powers] and/or [text:judiciary]. Lucene returns 15 results num-
bered 0 to 14. We see that paper 47 is the closest match to our query. This
document contains 18 instances of the term powers and 24 instances of judiciary.
This seems like a low score on a 0–1 scale for a document which matches all the
tokens in the query; the reason is because the documents are long, so the per-
centage of tokens in the document matching the query tokens is relatively low.

The token food does not show up in any documents, so the
query [text:food] returns no hits. If we enter the query string
powers of the judiciary food, it returns exactly the same hits as the query string
powers of the judiciary, in exactly the same order, but with lower scores. If we
try the query string judiciary +food, we are insisting that the token food appear

22 CHAPTER 1. THE LUCENE SEARCH LIBRARY

in any matching document. Because it doesn’t appear in the corpus at all, the
query string judiciary +food has zero hits. On the other hand, the must-not
query judiciary -food has the same hits with the same scores as does the query
for judiciary.

1.7.4 Ranking

For scoring documents against queries, Lucene uses the complex and
highly configurable abstract base class Similarity in the package in
org.apache.lucene.search. If nothing else is specified, as in our simple de-
mos, the concrete subclass DefaultSimilarity will be used.

Similarity deals with scoring queries with SHOULD-occur terms. In the search
language, all tokens are treated as SHOULD unless prefixed with the must-occur
marking plus-sign (+) or must-not occur negation (-).

The basic idea is that the more instances of query terms in a document the
better. Terms are not weighted equally. A term is weighted based on its inverse
document frequency (IDF), so that terms that occur in fewer documents receive
higher weights. Weights may also be boosted or lowered in the query syntax or
programmatically with a query object.

All else being equal, shorter documents are preferred. The reason for this
is that when two documents contain the same number of instances of query
terms, the shorter document has a higher proportion of query terms and is thus
likely to be a better match. This proportion may well be higher for a short docu-
ment which contains only a few instances of the query term than it is for a very
long document which contains many instances of the query term. This can be
problematic when a document collection contains both very short and very long
documents.

There is also a component of scoring based on the percentage of the query
terms that appear in the document. All else being equal, we prefer documents
that cover more terms in the query.

1.8 Deleting and Updating Documents

The the IndexWriter class supports methods to delete documents from an in-
dex based on a term or query. There is also a deleteAll() method to completely
clear the index.

The the IndexWriter class supports methods to update a document or doc-
uments that contain a term. The update operation consists of first deleting the
existing document(s) which contain a given term and then adding new one(s).
This operation is atomic with respect to any index readers open on the index.

In many cases, the documents being indexes have unique identifiers. For
example, in our file-based index, the file names are meant to be unique.13

We can then create a term containing the application’s document identifier
field and delete by term. For instance, we could call deleteDocuments(new

13Unlike a database, which enforces unique ids by declaration, Lucene requires the programmer to
treat fields as keys by convention.

1.8. DELETING AND UPDATING DOCUMENTS 23

Term("file","paper_12.txt")) to delete the document with file identifier
paper_12.txt.

In earlier versions of Lucene, document deletion was handled by an
IndexReader.14 However, as of 3.6 these delete document(s) methods on
IndexReader have been deprecated and in Lucene 4.0 all write support for this
class will be removed.

1.8.1 Visibility of Deletes

When a delete method is called on a writer based on a term or document iden-
tifier, the documents are not immediately physically deleted from the index. In-
stead, their identifiers are buffered and they are treated as if virtually deleted.

This approach to document deletion was made for the same efficiency rea-
sons and faces many of the same issues as concurrent sets of variables in Java’s
memory model. Even when deletes are called on one index, not every reader with
a handle on that index will be able to see the delete, but any new reader opened
on the index after the delete will see the deletion.

The storage space for a deleted document in the index directory is only re-
claimed during a merge step.

1.8.2 Lucene Deletion Demo

We have implemented an example of deleting documents in the demo class
LuceneDelete.

Code Walkthrough

The code is in the main() method of the demo class LuceneDelete. This method
takes three command-line arguments, the index directory path, along with the
field name and token used to construct the term to delete. We open the in-
dex directory and create a default analyzer just as we did in the demo class
LuceneIndexing.

After setting the command-line arguments and creating the analyzer, we cre-
ate an IndexWriterConfig object that will be passed in to the IndexWriter
constructor.

IndexWriterConfig iwConf
= new IndexWriterConfig(Version.LUCENE_36,ltcAn);

iwConf.setOpenMode(IndexWriterConfig.OpenMode.APPEND);

IndexWriter indexWriter
= new IndexWriter(fsDir,iwConf);

This time we set the open mode to IndexWriterConfig.OpenMode.APPEND.
Now we can attempt to delete a document from the index.

14Because the IndexWriter was originally designed just to append documents to an existing index,
it didn’t need to keep track of documents already in the index. But in order to delete a document, first
it must be found. Since this couldn’t be done with an IndexWriter, the deleteDocument methods
were added to the IndexReader class.

24 CHAPTER 1. THE LUCENE SEARCH LIBRARY

int numDocsBefore = indexWriter.numDocs();

Term term = new Term(fieldName,token);
indexWriter.deleteDocuments(term);
boolean hasDeletedDocs = indexWriter.hasDeletions();
int numDocsAfterDeleteBeforeCommit = indexWriter.numDocs();

indexWriter.commit();
int numDocsAfter = indexWriter.numDocs();

indexWriter.close();

We then construct a term out of the field and token and pass it to the index
writer’s delete method. After the deletion, we query the writer to find out if
deletions are pending. We check the number of docs before and after the call to
the commit() method.

Running the Demo

The Ant target lucene-delete invokes the class, supplying the value of proper-
ties index.dir, field.name, and token as command-line arguments.

Make sure that before you run this demo, you’ve run the indexing demo ex-
actly once. You can always delete the index directory and rebuild it if it gets
messed up.

> ant -Dindex.dir=temp.idx -Dfield.name=file -Dtoken=paper_12.txt
lucene-delete

index.dir=/Users/mitzimorris/aliasi/lpbook/src/applucene/temp.idx
field.name=file
token=paper_12.txt
Num docs before delete=85
Has deleted docs=true
Num docs after delete before commit=85
Num docs after commit=84

After the demo is run, we can look at the index directory again.

> export BLOCKSIZE=1024; ls -1 -s temp.idx

total 1524
1144 _0.fdt

4 _0.fdx
4 _0.fnm

84 _0.frq
4 _0.nrm

188 _0.prx
4 _0.tii

80 _0.tis
4 _0_1.del
4 segments.gen
4 segments_2

1.9. LUCENE AND DATABASES 25

There is now an extra file with suffix .del that holds information about which
items have been deleted. These deletes will now be visible to index readers that
open (or re-open) their indices.

1.9 Lucene and Databases

Lucene is like a database in its storage and indexing of data in a disk-like ab-
straction. The main difference between Lucene and a database is in the type of
objects they store. Databases store multiple type-able tables consisting of small
data objects in the rows. The Structured Query Language (SQL) is then used
to retrieve results from a database, often calling on multiple tables to perform
complex joins and filters.

Lucene, on the other hand, provides a configurable, but more homogeneous
interface. It mainly operates through text search (with some lightweight numeri-
cal and date-based embellishments), and returns entire documents.15

1.9.1 Transactional Support

In enterprise settings, we are usually very concerned with maintaining the in-
tegrity of our data. In addition to backups, we want to ensure that our indexes
don’t get corrupted as they are being processed.

A transaction in the database sense, as encapsulated in the Java 2 Enterprise
Edition (J2EE), is a way of grouping a sequence of complex operations, such as
committing changes to an index, such that they all happen or none of them
happen. That is, it’s about making complex operations behave as if they were
atomic in the concurrency sense.

Earlier versions of Lucene were not like databases in not having any kind of
transactional support. More recently, Lucene introduced configurable commit
operations for indexes. These commit operations are transactional in the sense
that if they fail, they roll back any changes they were in the middle of. This
allows standard database-type two-phase commits to be implemented directly
with fine-grained control over preparing and rolling back.

15Nothing prevents us from treating paragraphs or even sentences in a “real” document as a docu-
ment for Lucene’s purposes.

